

Physics

Lecture - 02

Rotational Dynamics

By - Sushant Sir

opics to be covered

- Centripetal and Tangential Acceleration
- Centripetal Force
- Centrifugal Force

Revision:

Angle traced by Radius Vector.

ds = do xr

Angular Velocity:

$$\omega = \theta_{/+} \quad \overrightarrow{\nabla} = \overrightarrow{\omega} \times \overrightarrow{\gamma}$$

Angular Accin .

$$\alpha = \frac{W_2 - W_1}{t}$$

Centripetal And Tangential Acceleration

$$\vec{a} = \vec{a}_t + \vec{a}_r$$

$$a = \sqrt{a_t^2 + a_r^2}$$

$$\overrightarrow{a}_t = \overrightarrow{\alpha} \times \overrightarrow{s}$$

$$\vec{a_r} = \vec{w} \times \vec{v}$$

$$\vec{a} = \vec{\alpha} \times \vec{\gamma} + \vec{w} \times \vec{v}$$

$$F_{CP} = ma_c$$
 $F_{TF} = ma_t$

In UCM at = 0, ar = 0

In Non UCM at \$0, ar \$0

Centripetal Force

F=ma.

Def":

The force acts on an object under-

going circular motion which is directed from

object towards the center of circle.

$$\vec{F} = -mv^2 \hat{\gamma}$$

Centrifugal Force

Defn:

The force which acts on object undergoing CM & directed away from the center of circle

$$\vec{F}_{CF} = mv^2 \hat{\gamma}$$

A body of mass 100 grams is tied to one end of a string and revolved along a circular path in the horizontal plane. The radius of the circle is 50 cm. If the body revolves with a constant angular speed of 20 rad/s, find the (i) period of revolution (ii) linear speed (iii) centripetal acceleration of the body.

Ttis UCM:
$$T=2$$
 i) $W=2\pi$
 $M=0.1 \text{ Kg}$ $V=2$
 $\Upsilon=0.5 \text{ M}$ $Q_{\gamma}=2$
 $W=20 \text{ rad/s}$
 $T=0.314$

i)
$$W = \frac{2\pi}{T}$$
 $T = \frac{2\pi}{30} = \frac{\pi}{10}$
 $T = 0.314s$.

111)
$$a_r = wv$$

= 20×10
= $200 \, m/s^2$.

Calculate the angular speed of the Earth due to its spin (rotational motion).

- (A) $7.273 \times 10^{-5} \text{ rad/s}$
- **B** $72.73 \times 10^{-5} \text{ rad/s}$
- \sim 727.3 × 10⁻⁵ rad/s
- \bigcirc 71.20 × 10⁻⁵ rad/s

$$\omega = 2\pi$$

$$W = \frac{2\pi}{24 \times 60 \times 60}$$

Find the angular speed of rotation of the Earth so that bodies on the equator would feel no weight. [Radius of the Earth = 6400 km, $g = 9.8 \text{ m/s}^2$]

- $1.237 \times 10^{-3} \, \text{rad/s}$
- $12.37 \times 10^{-3} \, \text{rad/s}$
- $123.7 \times 10^{-3} \, \text{rad/s}$
- $11.36 \times 10^{-3} \, \text{rad/s}$

$$w = \sqrt{\frac{g}{\chi}}$$

$$W = \sqrt{\frac{9.8}{6.4 \times 10^6}}$$

$$\sqrt{\frac{9.8}{6.4 \times 10^6}}$$
 $W = 1.237 \times 10^3$ rad/s.

To simulate the acceleration of large rockets, astronauts are seated in a chamber and revolved in a circle of radius 9.8 m. What angular speed is required to generate a centripetal acceleration 8 times the acceleration due to gravity? $[g = 9.8 \text{ m/s}^2]$

- A 2.828 rad/s
- B 3.337 rad/s
- **c** 28.28 rad/s
- D 33.37 rad/s

A motor part at a distance of 1.5 m from the motor's axis of rotation has a constant angular acceleration of 0.25 rad/s². Find the magnitude of its linear acceleration at the instant when its angular speed is 0.5 rad/s.

$$0.5303 \text{ m/s}^2$$

 0.5404 m/s^2

 0.54 m/s^2

 0.5505 m/s^2

$$a = e$$

$$a_{t} = \alpha r$$

$$= 0.25 \times 1.5$$

$$a_{t} = 0.3 + 5 \text{ m/s}^{2}.$$

$$q_r = \gamma w^2$$

= $\frac{3}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{3}{8} m/s^2$.

$$a = \sqrt{a_x^2 + a_t^2}$$

$$= \sqrt{(3/8)^2 + (3/8)^2}$$

$$=\frac{3}{8}\times\sqrt{2}$$

$$=\frac{3}{8}\times 1.414$$

$$a = \frac{4.242}{8}$$

A coin is placed on a stationary disc at a distance of 1 m from the disc's centre. At time t = 0 s, the disc begins to rotate with a constant angular acceleration of 2 rad/s² around a fixed vertical axis through its centre and perpendicular to its plane. Find the magnitude of the linear acceleration of the coin at t = 1.5 s. Assume the coin does not slip.

- A 9.22 m/s²
- B 9.21 m/s²
- 9.33 m/s²
- 9.44 m/s²

A wheel of diameter 40 cm starts from rest and attains a speed of 240 rpm in 4 minutes. Calculate its angular displacement in this time interval.

- A 960 π rad
- B 990 π rad
- **C** 940 π rad
- D 920 π rad

A flywheel slows down uniformly from 1200 rpm to 600 rpm in 5 s. Find the number of revolutions made by the wheel in 5s.

- A 75 revolutions
- B 85 revolutions
- © 89 revolutions
- 72 revolutions

An object of mass 0.5 kg is tied to a string and revolved in a horizontal circle of radius 1 m. If the breaking tension of the string is 50 N, what is the maximum speed the object can have?

- A 10 m/s
- B 12 m/s
- **c** 9 m/s
- D 11 m/s

A certain string 500 cm long breaks under a tension of 45 kg wt. An object of mass 100 g is attached to this string and whirled in a horizontal circle. Find the maximum number of revolutions that the object can make per second without breaking the string. [g = 9.8 m/s^2]

- (A) f = 4.726 Hz
- **B** f = 4.990 Hz
- f = 5.970 Hz
- f = 5.604 Hz

Summary

1)
$$\overrightarrow{a_{\gamma}} = \overrightarrow{w} \times \overrightarrow{V} \longrightarrow Centripetal$$

$$a_t = \overrightarrow{\alpha} \times \overrightarrow{r} \longrightarrow tangential$$

$$a = \sqrt{a_x^2 + a_t^2}$$

2)
$$\vec{F}_{cp} = - \frac{mv^2}{\gamma}$$

- 1) Revise lecture
- 2) Solve more questions on ar & at.

